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Automatic Performance Tuning (auto-tuning) is a proven 
(ATLAS, FFTW, SPIRAL, OSKI), empirical, feedback-driven, 
optimization technique designed to address many of the 
performance optimization challenges seen on multicore 
processors. 

The large performance gains attained via auto-tuning are only 
possible by exploiting high-level knowledge about the underlying 
numerical method. This knowledge allows transformations to 
data structure and algorithmic parameters that are beyond the 
reach of compilers.  This motivates encapsulation of functionality 
into large auto-tuned blocks that subsume control of data 
structure, algorithmic parameters, and possibly parallelism. 

Abstract 
In the 1990's, advances in CMOS technology, cooling, and 
superscalar out-of-order architectures allowed for an 
unprecedented acceleration in computing power beyond Moore's 
law. Unfortunately, as continued exponential performance gains 
through these technologies are no longer possible, the 
computing industry has embraced multicore as a means of 
providing ever-increasing peak computing performance. As there 
is no consensus on multicore architecture, a plethora of efficient, 
high-performance multicore architectures have emerged. 
However, the detailed architectural knowledge required to fully 
exploit these architectures is so prohibitively high that novel 
programming and optimization tools are required to ensure 
computational scientists within the DOE Office of Science may 
reap the benefits of advances in commodity computing 
technology. 

Recently, automatic performance tuning, or auto-tuning, 
emerged as a technology that provides performance portability 
of a few key computational kernels from one generation of 
architecture to the next. Our work on auto-tuning memory-
intensive kernels boosted performance by 25x over serial 
implementations and better than 4x over good parallel 
implementations, where our optimization and auto-tuning efforts 
on Cell improved performance by as much as 130x. Our work on 
graph analytic kernels on GPUs produced speedups of as much 
as 400x. 

Building on these advances, our proposed research agenda will 
address auto-tuning's two principal limitations: an interface ill-
suited to the forthcoming hybrid SPMD programming model; and 
its scope limited to fixed-function numerical routines. To that end, 
we will build a series of broadly-applicable, auto-tuned efficiency 
layer components. To address auto-tuning's first limitation, we 
will employ both SPMD computational collectives and 
concurrent runtimes. These will hide the complexity of both 
hybrid communication and multi- and manycore optimization. As 
such, this model will allow programmers to gracefully transition 
from the existing flat MPI programming model to a hybrid 
programming model capable of exploiting the full potential of 
multicore. Moreover, even if exascale architectures depart 
dramatically from either of these camps, collectives and runtimes 
provide a portable abstraction layer that will hide disruptive 
technological shifts. To address the second limitation, we will 
develop a runtime for concurrent operations on discrete data 
structures (deques, sets, and priority queues) and extend the 
sparse collectives and reduction runtimes to operate on non-
numeric data via alternate semirings. Finally, to demonstrate the 
utility of our method, we will integrate the resultant auto-tuned 
components into compact applications of interest to the 
Department of Energy and evaluate them at the largest 
concurrencies possible. 

The development of this technology will play an essential role in 
the exploitation of multi- and manycore architectures by 
scientists within the DOE Office of Science over the next 
decade. 
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Auto-tuners can be: 
•  Written for specific numerical methods or applications:  
 FFTW, BLAS (ATLAS, MKL), SpMV (OSKI), CA GMRES, 
 Lattice Boltzmann MHD (LBMHD), Fast Multipole Method (FMM) 

•  Generated from a Domain Specific Language: SPIRAL, stencils 
•  Generated from parsing C/FORTRAN code. 
•  Directly incorporated into a compiler. 

Auto-tuners Compilers Optimizations 
✔ Code/Loop 
✗ Data Structures 

limited Parallelism 

Algorithmic Parameters 
runtime,  
empirical 

offline,  
heuristics Implementation Selection 

Synchronization 

✔ 
✔ 
✔ 

✔ ✗ 
✗ ✔ MPI Communication 
✗ ✔ 

Auto-tuners can be reused across the breadth and evolution of 
multicore processors. For example, our SpMV, Stencil, and 
LBMHD auto-tuners were developed on an older generation of 
dual-core processors. Nevertheless, they continue to deliver 
substantial speedups on the latest generation of processors 
(including Magny Cours, Nehalem-EX, and BlueGene/P). 
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X-Stack Research Thrusts 

X-Stack Motivation 

Interaction with Co-Design and SciDAC Centers 

Attaining high performance on either a conventional multicore 
processor (Opteron, BGP, etc…) or novel manycore accelerator 
(GPU) is often challenging and unproductive as it requires hybrid 
programming models, detailed architectural knowledge, and a 
fundamental understanding of the applications in question.   

Moreover, we are faced with a conundrum: auto-tuning and 
threading are often essential for kernel performance, but 
threading an application can dramatically degrade application 
performance.  Optimizing hybrid applications is as much about 
accelerating the performance of the threaded routines as it is 
about minimizing the slowdown (compared to flat MPI) in the 
non-threaded routines. 

Furthermore, the existing set of library-based auto-tuners force 
programmers to conform to fixed functionality and a fixed 
interface. This makes integration and broad acceptance 
challenging. For example, we observe that the same 
optimizations are applicable in sparse linear algebra regardless 
of data type (real, complex, integers, or bits) or application 
domain (PDEs, graph analytics). Similarly, we observe that in the 
context of particle-mesh methods, although the optimal 
implementation may be unique to a particular dataset-
architecture-application tuple, a generalized optimization design 
space can capture all of them. 

Ultimately, when constructing auto-tuners, we end up solving the 
same core challenges over and over: management of data 
movement, data synchronization, and data replication. We 
believe much of this functionality should be extracted, 
generalized, auto-tuned, encapsulated so that the details 
are hidden from application scientists, and so that it may be 
easily reused. 

 Construction of a series of auto-tuned reduction runtimes that 
manage data locality, replication, and synchronization at both 
the intra- and inter-node levels.  Such tools will separate the 
common challenges we’ve observed in optimizing Particle-in-
Cell (PIC) codes from the core underlying method.  Moreover, 
the runtime can be made sufficiently general (alternate 
semirings) that it can be used in other application fields. 

 Construction of a series of auto-tuned routines for discrete 
data structures (sets, deques, priority queues, etc…) at both 
the intra- and inter-node levels.  Such data structures are 
increasingly used to implement complex, yet efficient 
numerical routines.  We believe such routines will not only 
enable further gains in performance on existing applications, 
but also serve emerging areas of interest to the Office of 
Science. 

 Integration of the above core routines into generalized 
(alternate semirings) and auto-tuned sparse linear algebra 
primitives (SpMV, SpGEMM).  Such multicore-optimized tools 
are clearly critical to scientific applications. 

 Integration and evaluation (performance & productivity) of the 
above into applications in the realms of PIC and Immersed 
Boundary Method  simulations and graph analytics.  

Auto-tuners are a productivity and risk mitigation strategy for 
both the Co-Design and SciDAC centers. Given the uncertainty 
in what exascale (or even 100PF) architectures will look like, it is 
improbable that today’s (hand) optimized implementations will 
run well on such machines. However, an auto-tuner can mitigate 
this uncertainty by exploring a software design space on each 
successive generation of processors and adapting to them.  

Moreover, as software can adapt to hardware, architects do not 
need to overprovision their processor designs to suit the needs 
of legacy applications and implementations.  The result is an 
improvement in power efficiency. 

Interaction is key as it ensures our implementations are 
sufficiently broad and we have the detailed application 
knowledge to implement the most complex optimizations.   
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Encapsulation and Abstraction 
Directly exploiting shared memory via loads and stores instead 
of passing messages is essential in attaining high performance 
and scalability on many applications.  Moreover, due to the 
complexities of their communication patterns, some applications 
struggle with MPI implementations but are easily expressed in 
PGAS models.  We will adopt a hierarchy of memories and map 
them to a 2D rank system. 

We will extend the well understood concept of communication 
collectives to perform auto-tuned numerical methods.  We 
differentiate auto-tuned library calls and computational 
collectives by the degree in which they may collaborate. 

Using shared memory extensions, we will construct both a 
tuning and a computational collective for each primitive to allow 
black boxing of auto-tuning and easy integration into existing 
MPI applications. 
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